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I. INTRODUCTION

It is well known that the roots of the theory of generalized inverses (see,
e.g., Bjerhammar [31, Albert [1]) are in the calculus of observations (or
"theory of errors"). For instance, the variational characterization of the
generalized inverse relies on the (direct) method of least squares (cf.
Groetsch [81). On the other hand, the generalized inverse of linear operators
is closely related to the functional analytic theory of splines (Laurent 111 I,
Delvos 15\). Aside from the direct method there exists a more intrinsic (and
less well-known) approach to the theory of least squares that may be traced
back to C. F. Gauss 161 (also see Grossmann 19\). In the recent literature
this approach is known as the Gauss-Markov theorem (Albert Ill, Beutler
and Root 12\) and Neyman-David theorem (Linnik 112 j). In the present
paper we apply the theory of generalized inverses of linear operators to show
that the minimal norm least-squares solution admits a characterization as the
unique Cebysev center (Holmes 110 I) of a certain bounded set of
"admissible" solutions of the given linear operator equation.

This geometric interpretation is revealed to be closely related to the notion
of optimal approximation in the functional analytic theory of splines
(Sard [151). Our goal is to display these connections which we have not seen
elsewhere in the literature.

2. GENERALIZED INVERSES AND LEAST-SQUARES SOLUTIONS

In this section the fundamentals of generalized inverses for continuous
linear operators with closed range in Hilbert spaces and their applications to
the method of least squares are summarized.
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Let HI' H 2 denote two complex Hilbert spaces and let T E B(H I , H 2) be a
continuous linear operator of HI into H 2 such that the range R(T) of T is a
closed vector subspace of H 2 • Then we have (cf. Groetsch [8])

R(T) = N(T*)~. ( 1)

where the right hand side denotes the orthogonal complement (in HJ of the
kernel of the adjoint T*: H 2 ---> H I of T. It should be observed that the
continuous linear operator T* E B(H2' HI) has also a closed range and
satisfies the condition

R(T*) = N(T)"-. (2)

Linear operators with closed range are called normally solvable (Petryshyn
[131). Any normally solvable continuous linear operator T E B(H I' H 2)
admits a generalized inverse

(3 )

The operator T+ is uniquely determined by the four Penrose equations that
read as follows:

TT+T= T,

T+TT+ = T 1
,

(TT+)* = TT+,

(r+ T)* = T'T.

(4 1 )

(4 2)

(4 , )

(4 4 )

For this and some other equivalent definitions of the generalized inverse, the
reader is referred to the monograph by Groetsch [8).

Let us now describe the least-squares solution of the linear operator
equation

Tx=b (5 )

in terms of the generalized inverse T + of T.
A vector x E HI is called a least-squares solution of the equation (5) if

and if it satisfies the condition

II Tx - bll ~ II Tu - bll (6 )

A least-squares solution X o E HI of (5) is of minimal norm if the conditions

IITxo - bll = II Tx - bll (x E HI' X '* x o) (7)
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imply the strict inequality

DELVOS AND SCHEMPP

lixoll < xii· (8)

The following result is well-known. For the proof see, for instance. Holmes

1101·

THEOREM 1. Let T E B(H I' H 2) denote a continuous linear normal/v
solvable operator. For any bE H 2' the element of HI given according to

X o = T t b (9)

represents the unique least-squares solution of the linear operator equation
(5) of minimal norm.

3. LEAST-SQUARES SOLUTIONS AS CEBYSEV CENTERS

Aside from the Hilbert spaces HI' H 2 let H.1 denote a third complex
Hilbert space. Let the continuous linear operator FE B(H I' J-l,) be fixed.

Consider the linear operator equation

Te + I5b = b ( 10)

where x E H I is supposed to denote the "exact" solution and 6b Elf, is the
error of the observation "measured by T."' The aim is to approximate the
"true value"' Fe E H.1 in terms of the measured observation Gb. where
G E B(H 2' J-l,) belongs to a certain set C(r. F) of operators that will be
specified now.

To this end. suppose that Gb E H.1 is an unbiased approximation of Fx.
i.e.. that I5b = 0 implies Gb = Fx. Then we have by (10)

F= GT. ( 1I )

Moreover. let V E B(H2) denote a fixed non-negative selfadjoint operator on
H 2' i.e.. a continuous operator of the space H 2 into itself such that

v= v*. v?:o o. ( 12)

Suppose that there exists a real number r > 0 such that

C(r. F) = jG E B(H 2 • If,) l F = Gr, Tr(GVG*)':;; r 2 f *' 12'. (13)

In (13), Tr denotes the trace, the main properties of which may be found in
Sard 1141 and Schatten 117 j. Now we are in a position to define the set
A (r. F) ~ H.1 of admissible approximations of Fx according to

A (r.F) = iGb l GE C(r.F)f. (14 )
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We shall suppose that A (r, F) forms a bounded subset of H). This
hypothesis is quite natural. Denoting by PR(1) the orthogonal projector on
the (closed) vector subspace R (T) of H2 , the additional hypothesis

(1 S)

will be made. The invariance property (I S) admits a statistical interpretation:
If V is considered as a variance operator of the observation error ()b (Sard
[14. 16/) then (I S) says that the "error" in R( T) L is uncorrelated with the
error in R(T) (see Beutler and Root 12]). For the role that (I S) plays in the
functional analytic spline theory. see also Delvas [S].

For any clement z E H 1 the error incurred with respect to the (bounded)
sct (14) is given by

£(z)= sup Ilz-lI'll= sup Ilz-Gbl!.
\I'E.,I(r.FI (JE('(r.F)

(16 )

/\ Cebysev center (cf. Holmes 110 /) of A(r, F) is an element Zo E H) which
best represents the set A (r. F), i.e., an element Zo E H) such that

( 17)

holds. In this case, E(zo) is called the Cebysev radius of the set A (r, F). In
other words: The Cebysev center Zo has a minimal maximal error. The
notion of minimal maximal error is fundamental in the theory of optimal
approximation. See Golomb and Weinberger [7 j for the scalar case (i.e.,
FE H; is a continuous linear form on HI) and Sard liS 1 for the general
(non-scalar) case.

The special structure of the set (14) allows an application of the
generalized hypercircle method (Synge [18 J, Davis [4 j, Sard IIS], Golomb
and Weinberger 17], Holmes 110]) in order to determine the Cebysev center
of A (r, F), the set of admissible approximations of Fx.

Retain the preceding notations. The following result will be basic for our
approach.

LEMMA 1. Let the operator G E B(H2 , H)) belong to the set C(r, F)
j(H a suitable number r > 0, i.e., suppose

F=GT, Tr(GVG*) < +00. (18)

Aforeover. suppose that the operator

Go=FT t (19 )
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satisfies Tr(GoVG(j) < +00. Then we have

F=GoT

and the equality of the traces

(20)

Tr(GVG*) = Tr(GoVGt) +Tr«G - Go) V(G - C o)*) (21)

obtains.

Proof From (18) we conclude N(T) r;;;. N(F). Hence the inclusion

N(F) r;;;. N(T) (22)

holds for the orthogonal complements in the Hilbert space HI' Taking into
account that T+ T = PR(f;) = PRU') = PV(J) _ holds, we conclude from (19).
F = FP,v(/_)_ and (22) that

= FP:\,(/" Px (/)"

= FPVl"

=F. (23 )

as (20) asserts. Since GV I
/
2 and Go V 1

/
2 are Hilbert-Schmidt operators of H 2

into H 3 • the operators (G - Go) V(G - C o)*. Go V(G - Go)*' (G - Co) VG l;

all have finite traces (Sard [141). It follows for the left hand side of (21 )

Tr(CVG*) = Tr(GoVG(n

-+ Tr«G - Go) V(C - Go)*)

-+ Tr«G - Co) VG(j)

-+ Tr(Go V(C - C o)*)' (24 )

Since V is a selfadjoint operator, the equality (21) is established if we have
proved that

(25)

holds. Indeed, we obtain by (19), (4 2 ), TT+ = PR(J)' (15), (4 3 ), (18) and
(19 ):
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Go V(G ~ Go)* = FT+ V(G - Go)*

= Fr Tr+ V(G - Go)*

= FT+ PR(T) V(G - GO)*

= FT+ VPR (1)(G - GO)*

= FT+ VTT j (G - Go)*

= Fr+ V(TT+ )*(G ~ Go)*

= FT ' (GTr+ - Go TTl)

= Fr+ (FT + ~ FTC, )

=0

219

(26 )

This completes the proof. I

Remark 1. Under the hypotheses of Lemma 1, equality (21) shows that
for any r > 0 we have

Tr(GoVG;j)= inf Tr(GVG*).
GEC(r.F)

(27)

Thus, using the terminology of Sard [151, the operator Go given by (19) is
an abstract spline with respect to the observation G ~" GT and the coobser
vation G "'. GV1n

.

The next lemma provides an expression of the translate of the "hyper
circle" C(r, F) as defined by (13).

LEMMA 2. If the number p > 0 is defined according to

where Go = Fr satisfies Tr(Go VGii) < +00, then we have

C(r, F) = Go + C(p, 0).

(28 )

(29)

Proof Let K E C(p, 0), i.e., KT = 0 and Tr(KVK*) (: pl. An application
of Lemma I yields F = (Go + K) T and

Tr((Go + K) V(Go + K)*) = Tr(GoVGt) + Tr(KVK*)

(: Tr(Go VG;j) + pl

(30)

Consequently, (Go + K) E C(r, F) and therefore Go + C(p, 0) C;;;; C(r" F). On
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the other hand. for a given G E C(r. F) define K = G - Go. Then we have
KT = 0 and (21) implies

Tr(KVK*) = Tr(GVG*) Tr(G Il VGtil

~ r' ~ Tr(G Il VGn)

= pl. (31)

This shows K E C(p, 0), i.e.. the inclusion C(r. F) \;;;; Gil + C(p, 0) holds and
the identity (29) is established. I

We are now in a position to determine the (unique) Cebysev center
ZII E H 1 of the set A (r, F) \;;;; H 1 of admissible approximations of Fx. Our
proof makes use of the techniques developed by Sard [lSI.

THEOREM 2. Let XII = r' h. Then the unique Ceby§eL: center of the set
A (r.F) (see (14)) is given by

Proof We have to establish the inequality

(32 )

E(zlI) < E(z) (Z Ell,. Z *' z,J!. (33)

An application of Lemma 2 yields (cf. ( 16))

E(z)'= sup Ilz-Gbl)'
GEC(r.!')

sup z Gob- Kh
I'EClp.OI

sup max(!lz-zlI-Kb 2.llz-Zo1-Kh]")
1\- Ee(p. OJ

1 , ,>- sup ~(I!z~zlI--Kbll"+ z-zlI+ Kb ,)
I'EC(p.1I1 2

sup (11Kbi12 + Z - ZllrJ
KEC(p.OI

= liz - zul1 2 + sup IIKbj!2.
I' EC(p.1l1

From (34) we conclude

From (35) inequality (33) follows. I

(34)

(35 )
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Let us consider the special case

H,=

v= idl/"

FEH; such that N(T)';;,N(F) (cf. (11)).

Then we have F*(I)ER(F*)';;,R(T*). Furthermore

Tr(CC*)=I!G 2=(C*(I)iC*(I)).

221

(36 )

(37)

1n particular. there exists a number r > 0 such that qr. F) '* 0.
An application of Theorem 2 yields the following infinite dimensional

version of the Neyman-David theorem (cf. Linnik [121):

COROLLARY 1. Let hypotheses (36) be satisfied and choose r> 0 so that
C(r. F) '* 0 holds. Then

represents the unique complex number so that the strict inequality

supjlF."I'o ~ Cbl i CT= F,II CII ~ r~

< supilz - Cbl l CT= F.IIC!i ~ rf

holds for all z E . z '* F"I'o.

(38)

(39 )

COROLLARY 2. Let p > 0 so that p2 = r 2
- II C oll 2

• In the present case, the
Cebysel' radius of the set A (r. F) is given according to

£(zo) = p II Txo - bll·

Proof In view of (16), (32), and (13) we have

£(zo)=suP1ICob-Cb!; F=CT,IICII~rf·

(40)

(41 )

By Lemma 2 we may write C = Co + K. where K E C(p, 0). Thus, we: obtain

£(zo)=supjIKbl iKT=O,iIK!I~pf

=sup~(bIK*(I))iT*K*(I)=O.iIK*(I)II~pf. (42)

Taking into account that N(T*) = N(T' ) holds, we have

E(zo) = supj(b!K*( I) ~ TT' K*(l») l T*K*(I) = O.li K*(I )i! ~ pf

=sup!(bIPR<1I,K*(I)); T*K*(I)=O.IIK*(I)li~pf

=sup(P!i<lI bIK*(I)) l T*K*(I)=O.liK*(I)II~pf. (43)
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Since PR(1) b = PN(T')b belongs to N(T*), the identity

£(zo) = p IIPR(T)~b II = p II TT"'- b - b II

follows. If we observe (9), the equality (40) obtains. I

In a second example, choose

H j =H 1 ,

F=Pyl/ )

Let V E B (H 2) satisfy the conditions (12), (13) and

Tr(V) < +00.

(44)

(45)

(46 )

In view of T+ T = PY(l)~ there exists a number r > 0 so that the hypercircle

is not empty; C(r, PN(T)JJ is the set of inner inverses G (i.e., TGT = T) with
bounded variance Tr(GVG*) <r2

• See Sard [14,16]. We assume that the set
A (r, PV1T)'c) of admissible approximations is bounded. Since in this example
X o = Fxo' we obtain immediately from Theorem 2 the following result:

COROLLARY 3. The minimal norm least-squares solution Xo = T + b of the
equation Tx + I5b = b is the unique Cebysev center of the set A (r, YYI /I ) of
admissible approximations Gb to the "true" solution x. i.e..

sup Ilxo - Gbll < sup liz - Gbll (z * xo). (48)
GEC(r.P\(n~) CiEC'(r'PS(f)-'--)

Remark 2. An important example occurs when the space H 2 is finite
dimensional. Then condition (41) holds trivially and Corollary 2 is true for
positive definite variance matrices V that satisfy the invariance property
(15). The choice V = aid1l2 is of particular importance.

Note added in proof The authors have been informed that in a recent note by C. w.
Groetsch. "'Generalized splines and generalized inverses:' Numer. Fune!. Anal. Oplim. 2
(1980). 93~97, a common functional analytic framework for splines and generalized inverses
has been given. [n this connection they also refer to the forthcoming paper of M. Tasche... A
unified approach to interpolation methods," J. Integral Equations. in press.
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